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Abstract

The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of1H nuclear magnetic resonance
(NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a
group of 150 healthy male and female subjects were subjected to1H NMR-based metabonomic analysis. The1H NMR spectra were analyzed
using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify
metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the
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lassification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metab
dentified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying th
hat are important for the discrimination of classes of individuals of similar physiological conditions.

2005 Elsevier B.V. All rights reserved.

eywords: PCA; PLS-DA; Metabonomics; NMR; Genetic algorithms

. Introduction

The metabonomics approach evolved from the pioneering
ork of Nicholson and co-workers to become a novel analytical

echnique for rapid discovery of biological dysfunctions in phar-
aceutical and clinical applications. It consists in using high-

esolution1H nuclear magnetic resonance (NMR) spectroscopic
rofiling of biological fluids combined with multivariate anal-
sis, to identify the metabolites that correlate with changes of
hysiological conditions[1,2]. It is defined as “the quantitative
easurement of the dynamic multi-parametric response of living

ystems to pathophysiological stimuli or genetic modification”
3]. The technique provides a global quantitative description of
undreds of low-molecular endogenous metabolites present in
biological sample, such as urine, plasma, or tissue[4,5]. The

igh-resolution1H NMR spectroscopy datasets are represented
s complex matrices with several hundreds of proton signals
riginating from the various metabolites. This complexity can
e untangled by the application of chemometrics methods that

are used to reduce the dimension of the1H NMR data for visu
alization purposes and to identify inherent patterns among
of spectral measurements. It can be used to generate mod
classification of disease states[6], toxic shocks[7,8], genetic
modifications[9], or even of change in diet[10]. The typica
examples of chemometric methods applied to analyze me
nomics data are principal component analysis (PCA)[11], soft
independent modeling of class analogy (SIMCA)[4], partial
least square discriminant analysis[12] (PLS-DA), and neura
networks[9,13].

In this article, we are presenting the results of a recent in
tigation, where we scrutinized the inherent metabolic variab
in a control human population in an attempt to derive m
variate boundaries of physiological normality. Three biolog
fluids, namely plasma, urine, and saliva samples, were coll
and analyzed employing high-resolution NMR and multiv
ate statistical data analysis. The identification of the metab
profiles in the respective biological fluids unravelled patt
related to key parameters such as gender, age, and life styl
metabolic profiles, annotated with these parameters, were
piled in a lifestyle database of healthy human beings nece
∗ Corresponding author. Tel.: +41 21 785 8020; fax: +41 21 785 9486.
E-mail address: ziad.ramadan@rdls.nestle.com (Z. Ramadan).

to identify disease- and nutrient-related metabolic fingerprints in
follow-up studies. In this paper, only the gender parameter will
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be considered. The chemometrics methods used for the pattern
recognition model were PCA and PLS-DA, while genetic algo-
rithms (GA) enabled the selection of the relevant variables in
the1H NMR dataset that provided better classification models.

2. Material and methods

2.1. Study set up and sample preparation

The study was conducted as a screening trial with one-time
sampling of blood, saliva, and urine samples provided by 150
healthy adult volunteers (48% females and 52% males). The
volunteers were recruited at Nestlé Research Center (NRC).
The samples were collected in May–June 2003 and immedi-
ately stored at−20◦C. All subjects were required to provide
an informed consent and to comply with all of the following
criteria: completion of a confidential questionnaire on health
status, completion of a detailed life style questionnaire, and not
being pregnant. Acutely ill subjects (cold, flu, fever, etc.) under
medication (antibiotic therapy, anti-inflammatory drugs, etc.)
were excluded from the study. For women, the sampling was
restricted to the first 10–15 days (inclusive) of the menstruation
cycle. The subjects were classified according to their gender,
age, and answers in the life style questionnaire (for example,
sport and exercise activities, alcohol consumption, coffee con-
s f the
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All NMR samples contain sodium azide to prevent bacterial
contamination, DSS (3-(trimethylsilyl)-1-propanesulfonic acid,
sodium salt) as internal reference substance (except the plasma
samples) and imidazole to check the pH.

2.2. NMR data collection

All one-dimensional1H NMR spectra were acquired on a
Bruker DRX-600 NMR spectrometer operating at 600.13 MHz.
Samples were measured in 5-mm-o.d. NMR tubes and at 300 K.
For all samples, a standard 1D1H pulse sequence with water
pre-saturation was applied. In addition to the standard 1D spec-
trum, Carr–Pucell–Meiboom–Gill (CPMG) spectra with spin
echo sequence�/2-tD-�-tD, were acquired for plasma and saliva
samples to attenuate broad signals arising from protein and
lipoproteins[14]. The spin echo loop time was adjusted to 64 ms.
A total of 256, 128, and 256 transients were collected for urine,
plasma, and saliva, respectively. Typical acquisition parameters
included 32 k data points, a spectral width of 8389 Hz, an acqui-
sition time of 1.95 s, and a relaxation delay of 2 s. As with the
standard 1D spectra, an exponential line-broadening function
of 0.3 Hz was applied to the free induction decay (FID) prior
to Fourier transformation. All spectra were processed for phase
and baseline correction. The urine and saliva spectra were refer-
enced to DSS (δ0 ppm) and the plasma spectra to lactate (CH3,
δ

2

vari-
a size
o ns in
c ritten
i al
r -
i zole
p

ws of
e resent
c sma
a for
u al-
i e for
d ed as
a pat-
t into
t nd a
t . The

T
S

S

P 97,

U 80,
umption, specific dietary regimes, etc.). The personnel o
etabolic Unit at NRC entered Demographic and life style

n a case report form (CRF). Finally, all of the information
een encoded to protect confidentiality. The trial was condu
ccording to the relevant legal requirements and approve

he local ethical committee.

.1.1. Urine samples
Second morning spot urine (minimum 20 ml) were collec

y the subject and brought to the Metabolic Unit at the tim
lood sampling. They were immediately frozen and store
20◦C. Urine samples were prepared by diluting (2:1) u
ith phosphate buffer (0.2 M Na2HPO4/0.2 M NaH2PO4, pH
.4; 80% H2O/20% D2O). The samples were subsequently c
rifuged and filled in NMR tubes.

.1.2. Blood samples
Two milliliters of blood was drawn from the antecubital v

y single puncture, using Sarstedt syringes with heparin as
oagulant. Plasma were immediately separated by centrifug
nd stored at−20◦C. For NMR measurements, the samples w
iluted twice with 90% H2O/10% D2O phosphate buffer (0.2 M
djusted to pH 6.0. After centrifugation, the samples were pl

n 5 mm NMR tubes for data acquisition.

.1.3. Saliva samples
A maximum of 2 ml was collected with “Salivettes” fro

arstedt at least 1 h after brushing the teeth in the morning
MR spectra were recorded after lyophilizing 500�l of saliva
nd subsequent reconstitution in 550�l of deuterated phospha
uffer (0.2 M) adjusted to pH 7.4.
d
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1.33 ppm).

.3. Data reduction and pattern recognition

Each NMR spectrum was reduced to smaller number of
bles, calculated by integrating regions of equal bucket
f 0.02 ppm and variable bucket size where large variatio
hemical shift were expected using an in-house routine w
n MATLAB (The MathWorks, Natick, MA). Several spectr
egions were excluded as shown inTable 1, mainly to elim
nate variation in water suppression efficiency and imida
eaks.

The datasets were rearranged in such a way that the ro
ach data matrix represent the subjects and the columns rep
hemical shift (variable). The size of the dataset for the pla
nd saliva samples was 150× 493. The size of the dataset
rine samples was 150× 409. Each spectral dataset was norm

zed to the total sum of the integrals to partially compensat
ifferences in concentrations. The gender affiliation was us
dependent variable, i.e., the variable to be predicted by

ern recognition methods. The entire dataset was divided
wo parts: a training set that was used to build a model a
est set that was used to test the model’s predictive ability

able 1
pectral regions excluded from1H NMR spectra

ample type Spectral regions excluded (δ)

lasma and saliva <0.5, >9.5, 4.5–5.1 (water peak), 7.341–7.3
8.449–8.501 (imidazole peak)

rine <0.4, >9.0, 4.5–5.1 (water peak), 7.378–7.4
8.467–8.679 (imidazole peaks)
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training set was prepared by taking every first pair of samples,
while every third sample was included in the test set. There-
fore, the training set was composed of 1001H NMR spectra and
the test set was composed of 50 spectra. The test set was sep-
arated from the data and was not used to monitor the training
process. This procedure prevented any possibility that the best
regression models selected had a chance correlation to pecu-
liarities in the measurements of the test set and reduced the
risk of over-fitting. Two scaling methods were applied, auto-
scaling and Pareto scaling. In auto-scaling, the variable mean
was subtracted from each variable (column of the data) and
then each variable was divided by its standard deviation. The
same process was repeated in Pareto scaling except that the
square root of the standard deviation was used. Pareto scaling
falls in between no scaling at all and auto-scaling and gives
the variable a variance equal to its standard deviation instead
of unit variance. The Pareto scaling was applied when PCA or
PLS-DA were used, while auto-scaling was applied during the
training process of the GA. This gave equal weights to all of
the chemical shifts during the training process of variable selec-
tion with GAs. Three latent variables were used in all PLS-DA
classification models to avoid over-fitting and for comparison
purposes.

Multivariate analyses such as principal component analysis,
partial least square discriminant analysis, and genetic algorithms
were performed using PLSToolbox 3.0 (Eigenvector Research,
Inc., Manson, WA 98831) for MATLAB and the software pack-
age SIMCA (Version 8, Umetrics AB, Umeå, Sweden).

2.4. Variable selection using genetic algorithms

GAs and evolutionary programming are optimization tech-
niques[15,16] based on the concepts of natural selection and
evolution and they have been used to efficiently solve variable
selection problems[17,18]. In this approach, the variables are
represented as genes on a chromosome, and they are generally
coded as binary strings. Through a simulated natural selection
and the action of the genetic operators mutation and recombi-
nation, chromosomes that satisfy at best to a predefined fitness
function are found. The fitness function is deduced from the
gene composition of a chromosome. In our case, we used the
percent of correct prediction of gender affiliation as the rele-
vant fitness function to drive the optimization process. Using
the recombination operator, the GA combines genes from two
parent chromosomes to form two new chromosomes (children)
that have a high probability of having better fitness than their

F
e

ig. 1. Scores plot of a two-component PCA model of1H NMR spectra showing
ach PC for: (a) plasma, (b) urine, and (c) saliva dataset.
sample clustering according to Gender with percentage of variance captures by
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parents. GA offers a generational improvement in the fitness of
the chromosomes and after many generations will create chro-
mosomes containing the optimized variable settings. GA has
several advantages when compared to other optimization algo-
rithms. They have the ability to move from local optima present
on the response surface. They require no knowledge or gradient
information about the response surface and can be employed for
a wide variety of optimization problems[19]. The major draw-
back of GA is that there can be difficulties in finding the exact
global optimum, which requires a large number of response (fit-
ness) function evaluations and prohibitively long computation
time [20].

In GA variable selection method, a population of strings is
randomly created where each string is a row vector contain-
ing as many elements as there are variables. Each element is
coded as 1, if the corresponding variable was selected, and 0
if it was not selected. The fitness of the string is equal to the
evaluation response that is based on the predictive ability with
a given subset of selected variables. The method used in the
GA variable selection is designed to select variables with lowest
prediction error. Thus, at each step, half of the PLS-DA mod-
els formed with the lowest prediction error are allowed to live
and breed. The prediction errors were determined using ran-
dom crossvalidation procedure. Pairs of these model forms are
randomly selected. The sets of strings belonging to these two
models are used for breeding using a crossover technique. Then,
t con
v ts in
t rings
w ure i
r , the
m latio
s do
b 005)
F with
d opti-
m GA
m ach
d algo

rithms were recently applied as a supervised learning procedure
to discriminate urine proteomics and metabonomics patterns in
the diagnosis of interstitial and bacterial cystitis. The technique
was applied jointly to NMR and MS metabolic fingerprints of
healthy individuals and disease patients, and was able to predict
unaffected subjects with a success rate of nearly 84%[21].

3. Results and discussion

3.1. PCA

PCA of the1H NMR spectra of the three biofluids (plasma,
urine, and saliva) for the gender differences is presented in
Fig. 1. In Fig. 1a, the representative points of the plasma sam-
ples are mapped in the space spanned by the first two principal
components PC1 versus PC2. This scores plot is illustrating a
reasonable clustering appearing according to gender member-
ship. The same trends are shown inFig. 1b that represents the
urine samples, andFig. 1c illustrating the distribution of the
saliva samples. PCA unravelled the existence of differences in
plasma composition (54% of variance was captured by first PC)
in the male (blue) and female (red) subjects, which were missing
in urine or saliva.

Fig. 3. (a) PLS-DA scores plot of Life Style Feature “gender” in plasma for the
test set along with the percentage of variance capture by each latent variable and
(b) corresponding loadings plot for the PLS-DA model.
he mutation operator is introduced to prevent premature
ergence to local optima by randomly sampling new poin
he search space. It sets the fraction of bits in the binary st
hich are randomly flipped in each generation. The proced

epeated several times until it converges. In all the GA runs
aximum number of generations was set to 500, the popu

ize was set 128, the breeding crossover rule was set to
le crossover, and the default mutation rate was used (0.
inally, the GA training process was repeated 10 times
ifferent pseudo-random starting points to obtain the global
um and check the stability of the GA model. Most of the
odels gave similar results; thus, only one GA model for e
ataset will be presented in this paper. Interestingly, genetic

Fig. 2. PCA loadings plot of Life Style Feature “gender” in plasma.
-

,
s

n
u-
.
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Fig. 4. PLS-DA sores plot of urine dataset: (a) training set, (b) test set, and (c) the corresponding loadings plot.

To find out precisely which regions of the NMR spectra have
caused the separation between the male and female populations
when scrutinizing the plasma samples, the loadings plot of the
related PCA model is shown inFig. 2.

This loadings plot shows the regions of the NMR spectra,
which are responsible for the clustering appearing in the scores
plot of the plasma samples. Peaks with different levels between
the two genders appeared in the same region of the scores and the
loadings plot. InFig. 1, it is clearly shown that PC2 is capturing

Fig. 5. PLS-DA scores plot of saliva dataset.

most of the variations between the genders. The loadings of PC2,
those were most influential for the gender separation in plasma,
are summarized inTable 2.

The inspection ofTable 2indicated that the main difference
between the two genders occurred in their plasma lipid pro-
files. The total cholesterol level was found somewhat higher in
females than males. Since these lipids are the most abundant
metabolites in the blood, most of the variations in PCA were
due to these metabolites. The scrutiny of the higher order PCs
(four and five PCs) indicated no additional separation between
genders.

Table 2
PCA-detected1H NMR spectral regions that cause separation between genders
(plasma samples)

Chemical shift (ppm) Metabolites

δ0.84–δ0.86 Mainly due to CH3 groups from fatty acid
side chains in lipids of HDL particles

δ1.24–δ1.26 Mainly due to (CH2)n groups from fatty acid
side chains in lipids of HDL particles

δ3.22–δ3.24 Mainly due to choline –N(CH3)3
+

principally phosphatidylcholine from
lipoproteins, mainly HDL

δ5.28 Mainly due to CH of lipids
δ1.98 Mainly due to CH2C C of lipids
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The supervised clustering method PLS-DA was carried out to
enhance the poor separation obtained with the PCA model for the
urine and the saliva NMR spectra. The model was validated with
an independent test set. Again, a good gender class separation
was attained after PLS-DA for the integrated1H NMR spectra of
plasma. The scores plot of the first and the second latent variable
is shown inFig. 3a for the plasma (test set) and the loading plot
of the latent variables is shown inFig. 3b.

In general, loadings plot (Fig. 3b) indicated that the same
regions of the spectra that contributed to the clustering in the
PCA analysis also contributed to the clustering seen after appli-
cation of PLS-DA. The rate of correct classification was 84%
within the training set and 84% within the test set.

In what concerns the urine dataset, a better separation was
attained after applying PLS-DA. The scores plot for the training
and the test set is shown inFig. 4a and b, respectively.
Fig. 6. (a) PLS-DA sores plot in plasma after GA and (b) th
e regression coefficients of the PLS-DA model shown in (a).
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The classification percentage of the training set was 93%
and 76% for the test. The corresponding loadings plot of the
PLS-DA model is shown inFig. 4c. The loadings that were
the most influential in the separation of genders were situated
aroundδ2.55 andδ2.7 (due to citrate),δ3.05 andδ4.05 (due to
creatinine),δ7.58, δ7.66, δ7.54, andδ7.52 (due to hippurate),
δ3.44 (due to taurine), andδ3.29 (due to trimethylamineoxide).

In the case of saliva samples, a poor separation between male
and female classes was attained after applying PLS-DA. The
scores plot for the training set is shown inFig. 5. The classifi-
cation percentage of the training set was 70% and 52% for the
test.

In order to optimize the separation between the classes under
investigation and to improve the performance of the subsequent
Fig. 7. (a) PLS-DA scores plot in urine after GA and (b) th
e regression coefficients of the PLS-DA model shown in (a).
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multivariate pattern recognition analysis, a variable selection
method was applied. GA was applied to achieve a better sepa-
ration of the classes and remove variables that were not related
to gender differences. After GA, the number of variables was
reduced to 78 for the plasma samples, 69 for the urine sam-
ples, and 68 for the saliva samples. The classification percentage
was improved in both the training and the test set for both
plasma and urine dataset, but not in the saliva dataset. For the
plasma dataset, the scores plot (test set) after GA is shown in
Fig. 6a, along with the regression coefficients plot for the vari-
ables that survived the GA variable selection method shown in
Fig. 6b.

After application of GA, the male and female groups were
well separated in the PLS-DA scores plot of LV1 and LV2
(Fig. 6a). A negative value in the plot of the regression coef-
ficients (Fig. 6b) indicated a relatively high concentration of the
metabolites present in the female plasma samples, while a posi-
tive value indicated a relatively lower concentration. The inverse
was true in what concerns the male plasma samples. In general,
the regression coefficients plot indicated that similar regions
of the spectra that contributed to the clustering in the original
dataset also contributed to the clustering seen after application
of the GA variable selection procedure. Also, GA selected new
chemical shifts that are important in discrimination between the
two genders. These chemical shifts are:δ3.04 andδ3.93 (due to
creatine),δ3.58 (due to glucine),δ4.08 (due to choline),δ2.46
( er-
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Table 4
Summary of classification percentages for the test set

Sample type PLS-DA PLS-DA (after GA)

Plasma 84 96
Urine 76 84
Saliva 52 52

4. Conclusion

The 1H NMR metabonomic investigation presented in this
work, combined with variable filtration algorithms and pattern
recognition procedures, gave an evidence for the existence of
clear metabolic differentiation of individuals, according to their
gender or life style. In the first phase of this work, unsupervised
(PCA) and supervised (PLS-DA) data mining methods, applied
in combination with correct and rigorous pre-processing of the
data, demonstrated that it is possible to obtain models that accu-
rately classify metabonomic data samples. In the second part
of the work, genetic algorithm procedures were incorporated
to optimize the resulting PLS regression equations by removing
irrelevant variables. GAs variable selection method dramatically
improved the separation between the two genders and different
metabolites were identified that were involved in this separation.
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