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Abstract

The aim of this study was to evaluate evolutionary variable selection methods in improving the classificdtiomoiear magnetic resonance
(NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva fror
group of 150 healthy male and female subjects were subjectdd MMR-based metabonomic analysis. THé NMR spectra were analyzed
using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to ident
metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance
classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites w
identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metat
that are important for the discrimination of classes of individuals of similar physiological conditions.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction are used to reduce the dimension of theNMR data for visu-
alization purposes and to identify inherent patterns among sets
The metabonomics approach evolved from the pioneeringf spectral measurements. It can be used to generate models for
work of Nicholson and co-workers to become a novel analyticatlassification of disease statf§, toxic shocks[7,8], genetic
technique for rapid discovery of biological dysfunctions in phar-modifications[9], or even of change in didil0]. The typical
maceutical and clinical applications. It consists in using high-examples of chemometric methods applied to analyze metabo-
resolutiontH nuclear magnetic resonance (NMR) spectroscopiGomics data are principal component analysis (P{14], soft
profiling of biological fluids combined with multivariate anal- independent modeling of class analogy (SIMJA), partial
ysis, to identify the metabolites that correlate with changes ofeast square discriminant analy$i®] (PLS-DA), and neural
physiological condition$l,2]. It is defined as “the quantitative networks[9,13].
measurement of the dynamic multi-parametric response ofliving |n this article, we are presenting the results of a recent inves-
systems to pathophysiological stimuli or genetic modification”tigation, where we scrutinized the inherent metabolic variability
[3]. The technique provides a global quantitative description ofn a control human population in an attempt to derive multi-
hundreds of low-molecular endogenous metabolites present igariate boundaries of physiological normality. Three biological
a biological sample, such as urine, plasma, or ti$éu. The  fluids, namely plasma, urine, and saliva samples, were collected
high-resolutiontH NMR spectroscopy datasets are representeéind analyzed employing high-resolution NMR and multivari-
as complex matrices with several hundreds of proton signalgte statistical data analysis. The identification of the metabolite
originating from the various metabolites. This complexity canprofiles in the respective biological fluids unravelled patterns
be untangled by the application of chemometrics methods thaklated to key parameters such as gender, age, and life style. The
metabolic profiles, annotated with these parameters, were com-
piled in a lifestyle database of healthy human beings necessary
* Corresponding author. Tel.: +41 21 785 8020; fax: +41 21 785 9486. toidentify disease- and nutrient-related metabolic fingerprints in
E-mail address: ziad.ramadan@rdls.nestle.com (Z. Ramadan). follow-up studies. In this paper, only the gender parameter will
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be considered. The chemometrics methods used for the pattern All NMR samples contain sodium azide to prevent bacterial
recognition model were PCA and PLS-DA, while genetic algo-contamination, DSS (3-(trimethylsilyl)-1-propanesulfonic acid,
rithms (GA) enabled the selection of the relevant variables irsodium salt) as internal reference substance (except the plasma
thelH NMR dataset that provided better classification models samples) and imidazole to check the pH.

2. Material and methods 2.2. NMR data collection

2.1. Study set up and sample preparation All one-dimensionallH NMR spectra were acquired on a
Bruker DRX-600 NMR spectrometer operating at 600.13 MHz.
The study was conducted as a screening trial with one-tim&amples were measured in 5-mm-o.d. NMR tubes and at 300 K.
sampling of blood, saliva, and urine samples provided by 15@or all samples, a standard ¥Bi pulse sequence with water
healthy adult volunteers (48% females and 52% males). There-saturation was applied. In addition to the standard 1D spec-
volunteers were recruited at NéstResearch Center (NRC). trum, Carr—Pucell-Meiboom-Gill (CPMG) spectra with spin
The samples were collected in May—June 2003 and immedecho sequence/2-tp-m-tp, were acquired for plasma and saliva
ately stored at-20°C. All subjects were required to provide samples to attenuate broad signals arising from protein and
an informed consent and to comply with all of the following lipoproteing14]. The spin echo loop time was adjusted to 64 ms.
criteria: completion of a confidential questionnaire on healthA total of 256, 128, and 256 transients were collected for urine,
status, completion of a detailed life style questionnaire, and nddlasma, and saliva, respectively. Typical acquisition parameters
being pregnant. Acutely ill subjects (cold, flu, fever, etc.) underincluded 32 k data points, a spectral width of 8389 Hz, an acqui-
medication (antibiotic therapy, anti-inflammatory drugs, etc.)sition time of 1.95s, and a relaxation delay of 2s. As with the
were excluded from the study. For women, the sampling wastandard 1D spectra, an exponential line-broadening function
restricted to the first 10-15 days (inclusive) of the menstruatio®f 0.3 Hz was applied to the free induction decay (FID) prior
cycle. The subjects were classified according to their gendeto Fourier transformation. All spectra were processed for phase
age, and answers in the life style questionnaire (for examplénd baseline correction. The urine and saliva spectra were refer-
sport and exercise activities, alcohol consumption, coffee corenced to DSS (50 ppm) and the plasma spectra to lactate, (CH
sumption, specific dietary regimes, etc.). The personnel of thél.33 ppm).
Metabolic Unit at NRC entered Demographic and life style data
in a case report form (CRF). Finally, all of the information has2.3. Data reduction and pattern recognition
been encoded to protect confidentiality. The trial was conducted
according to the relevant legal requirements and approved by Each NMR spectrum was reduced to smaller number of vari-
the local ethical committee. ables, calculated by integrating regions of equal bucket size
of 0.02 ppm and variable bucket size where large variations in
2.1.1. Urine samples chemical shift were expected using an in-house routine written

Second morning spot urine (minimum 20 ml) were collectedn MATLAB (The MathWorks, Natick, MA). Several spectral

by the subject and brought to the Metabolic Unit at the time off€gions were excluded as shownTable 1, mainly to elim-
blood sampling. They were immediately frozen and stored aihate variation in water suppression efficiency and imidazole

—20°C. Urine samples were prepared by diluting (2:1) urineP€aks.

with phosphate buffer (0.2 M N&PQO4/0.2 M NaHPOQy, pH The datasets were rearranged in such a way that the rows of
7.4; 80% H0O/20% D»0). The samples were subsequently cen-€ach datamatrix representthe subjects and the columns represent
trifuged and filled in NMR tubes. chemical shift (variable). The size of the dataset for the plasma

and saliva samples was 150193. The size of the dataset for
2.1.2. Blood samples grine samples was 150409.. Each spectral d_ataset was normal-

Two milliliters of blood was drawn from the antecubital vein |;ed to the tptal sum of the integrals to partla!ly cpmpensate for

. : : : . differences in concentrations. The gender affiliation was used as

by single puncture, using Sarstedt syringes with heparin as anté- dependent variable, i.e., the variable to be predicted by pat-
cozgulang Plazsomgwereimmediatelyseparateﬂ bycentlrifugatiQEQm recognition meth’ods.’The entire dataset was divided into
and stored at-20°C. For NMR measurements, the samples wer . . )
diluted twice with 90% HO/10% D,O phosphate buffer(po.z M) etwo parts: a training set that was used to build a model and a

adjusted to pH 6.0. After centrifugation, the samples were placetc?St set that was used to test the model’s predictive ability. The

in 5mm NMR tubes for data acquisition.
Table 1

Spectral regions excluded frotil NMR spectra

2.1.3. Saliva samples

A maximum of 2ml was collected with “Salivettes” from SamPletype Spectral regions excluded (9)
Sarstedt at least 1 h after brushing the teeth in the morning. Th&lasma and saliva <0.5,>9.5, 4.5-5.1 (water peak), 7.341~7.397,

NMR spectra were recorded after lyophilizing 5000f saliva , 8.449-8.501 (imidazole peak)
Urine <0.4,>9.0, 4.5-5.1 (water peak), 7.378-7.480,

and subsequent reconstitution in 5EH®f deuterated phosphate

. 8.467-8.679 (imidazol k
buffer (0.2 M) adjusted to pH 7.4. (imidazole peaks)
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training set was prepared by taking every first pair of samples, Multivariate analyses such as principal component analysis,
while every third sample was included in the test set. Therepartial least square discriminant analysis, and genetic algorithms
fore, the training set was composed of Z6ONMR spectraand  were performed using PLSoolbox 3.0 (Eigenvector Research,
the test set was composed of 50 spectra. The test set was sépe., Manson, WA 98831) for MATLAB and the software pack-
arated from the data and was not used to monitor the trainingge SIMCA (Version 8, Umetrics AB, Unae Sweden).

process. This procedure prevented any possibility that the best

regression models selected had a chance correlation to pect4. Variable selection using genetic algorithms

liarities in the measurements of the test set and reduced the

risk of over-fitting. Two scaling methods were applied, auto- GAs and evolutionary programming are optimization tech-
scaling and Pareto scaling. In auto-scaling, the variable meamiques[15,16] based on the concepts of natural selection and
was subtracted from each variable (column of the data) andvolution and they have been used to efficiently solve variable
then each variable was divided by its standard deviation. Theelection problem§l7,18]. In this approach, the variables are
same process was repeated in Pareto scaling except that ttepresented as genes on a chromosome, and they are generally
square root of the standard deviation was used. Pareto scalimgded as binary strings. Through a simulated natural selection
falls in between no scaling at all and auto-scaling and giveand the action of the genetic operators mutation and recombi-
the variable a variance equal to its standard deviation insteaghtion, chromosomes that satisfy at best to a predefined fithess
of unit variance. The Pareto scaling was applied when PCA ofunction are found. The fitness function is deduced from the
PLS-DA were used, while auto-scaling was applied during theggene composition of a chromosome. In our case, we used the
training process of the GA. This gave equal weights to all ofpercent of correct prediction of gender affiliation as the rele-
the chemical shifts during the training process of variable selecsant fitness function to drive the optimization process. Using
tion with GAs. Three latent variables were used in all PLS-DAthe recombination operator, the GA combines genes from two
classification models to avoid over-fitting and for comparisonparent chromosomes to form two new chromosomes (children)

purposes. that have a high probability of having better fithess than their
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Fig. 1. Scores plot of a two-component PCA modeldfNMR spectra showing sample clustering according to Gender with percentage of variance captures by
each PC for: (a) plasma, (b) urine, and (c) saliva dataset.
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parents. GA offers a generational improvement in the fitness afithms were recently applied as a supervised learning procedure
the chromosomes and after many generations will create chrade discriminate urine proteomics and metabonomics patterns in
mosomes containing the optimized variable settings. GA hathe diagnosis of interstitial and bacterial cystitis. The technique
several advantages when compared to other optimization algeras applied jointly to NMR and MS metabolic fingerprints of
rithms. They have the ability to move from local optima presenthealthy individuals and disease patients, and was able to predict
on the response surface. They require no knowledge or gradienhaffected subjects with a success rate of nearly B4
information about the response surface and can be employed for

a wide variety of optimization problenj$9]. The major draw- 3, Results and discussion

back of GA is that there can be difficulties in finding the exact

global optimum, which requires a large number of response (fit3. 7. pca

ness) function evaluations and prohibitively long computation

time [20]. PCA of thelH NMR spectra of the three biofluids (plasma,

In GA variable selection method, a population of strings isurine, and saliva) for the gender differences is presented in
randomly created where each string is a row vector containrig. 1. In Fig. 1a, the representative points of the plasma sam-
ing as many elements as there are variables. Each elementgks are mapped in the space spanned by the first two principal
coded as 1, if the corresponding variable was selected, anddmponents PC1 versus PC2. This scores plot is illustrating a
if it was not selected. The fitness of the string is equal to thgeasonable clustering appearing according to gender member-
evaluation response that is based on the predictive ability witkhip. The same trends are showrFig. 1b that represents the
a given subset of selected variables. The method used in thgine samples, anéfig. 1c illustrating the distribution of the
GA variable selection is designed to select variables with lowes§aliva samples. PCA unravelled the existence of differences in
prediction error. Thus, at each step, half of the PLS-DA mod-plasma composition (54% of variance was captured by first PC)
els formed with the lowest prediction error are allowed to livein the male (blue) and female (red) subjects, which were missing
and breed. The prediction errors were determined using rann urine or saliva.
dom crossvalidation procedure. Pairs of these model forms are
randomly selected. The sets of strings belonging to these two 06

models are used for breeding using a crossover technique. Then, 2 5

the mutation operator is introduced to prevent premature con- 0.4 0'

vergence to local optima by randomly sampling new points in & O

the search space. It sets the fraction of bits in the binary strings,  *?| P o0 e

which are randomly flipped in each generation. The procedure is g 0 ;.0 : O 00
repeated several times until it converges. In all the GAruns, the 2

maximum number of generations was set to 500, the population % 0.2 9 o o o

size was set 128, the breeding crossover rule was set to dou- > P @ 'S &
ble crossover, and the default mutation rate was used (0.005). e .. e ©
Finally, the GA training process was repeated 10 times with B

different pseudo-random starting points to obtain the global opti-

mum and check the stability of the GA model. Most of the GA 08 - - . . ‘

0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

models gave similar results; thus, only one GA model for each (@) LV 1 (38.27%)
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Fig. 4. PLS-DA sores plot of urine dataset: (a) training set, (b) test set, and (c) the corresponding loadings plot.

To find out precisely which regions of the NMR spectra havemost of the variations between the genders. The loadings of PC2,
caused the separation between the male and female populatiaih®se were most influential for the gender separation in plasma,
when scrutinizing the plasma samples, the loadings plot of thare summarized ifiable 2.
related PCA model is shown Fig. 2. The inspection ofrable 2indicated that the main difference

This loadings plot shows the regions of the NMR spectrapetween the two genders occurred in their plasma lipid pro-
which are responsible for the clustering appearing in the scoredfles. The total cholesterol level was found somewhat higher in
plot of the plasma samples. Peaks with different levels betweefemales than males. Since these lipids are the most abundant
the two genders appeared in the same region of the scores and thetabolites in the blood, most of the variations in PCA were
loadings plot. IrFig. 1, it is clearly shown that PC2 is capturing due to these metabolites. The scrutiny of the higher order PCs

(four and five PCs) indicated no additional separation between
S ' ; ¢ genders.
® M
15 1

Table 2
PCA-detectedH NMR spectral regions that cause separation between genders
(plasma samples)

[y
1

B Chemical shift (ppm) Metabolites

o
¢ | 50.84—-50.86 Mainly due to CH groups from fatty acid
“ side chains in lipids of HDL particles
® “ §1.24-51.26 Mainly due to (CH), groups from fatty acid

LV 2 (18.52%)
(=]
3]

o

-0.5 side chains in lipids of HDL particles
§3.22-53.24 Mainly due to choline —N(Ch)3*
1 ® i i i principally phosphatidylcholine from
-1 -0.5 0 0.5 1 lipoproteins, mainly HDL
LV 1 (19.48%) 55.28 Mainly due to CH of lipids
§1.98 Mainly due to CHC=C of lipids

Fig. 5. PLS-DA scores plot of saliva dataset.
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The supervised clustering method PLS-DA was carried outto In general, loadings plot (Fig. 3b) indicated that the same
enhance the poor separation obtained with the PCA model for theegions of the spectra that contributed to the clustering in the
urine and the saliva NMR spectra. The model was validated witf? CA analysis also contributed to the clustering seen after appli-
an independent test set. Again, a good gender class separatication of PLS-DA. The rate of correct classification was 84%
was attained after PLS-DA for the integrafédiNMR spectraof ~ within the training set and 84% within the test set.
plasma. The scores plot of the first and the second latent variable In what concerns the urine dataset, a better separation was
is shown inFig. 3a for the plasma (test set) and the loading plotattained after applying PLS-DA. The scores plot for the training

of the latent variables is shown Fig. 3b. and the test set is shown fitig. 4a and b, respectively.
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Fig. 6. (a) PLS-DA sores plot in plasma after GA and (b) the regression coefficients of the PLS-DA model shown in (a).
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The classification percentage of the training set was 93% In the case of saliva samples, a poor separation between male
and 76% for the test. The corresponding loadings plot of thend female classes was attained after applying PLS-DA. The
PLS-DA model is shown irFig. 4c. The loadings that were scores plot for the training set is shownhig. 5. The classifi-
the most influential in the separation of genders were situatedation percentage of the training set was 70% and 52% for the
arounds2.55 and’2.7 (due to citrate)§3.05 and’s4.05 (due to  test.
creatinine),87.58,87.66,57.54, ands7.52 (due to hippurate), In order to optimize the separation between the classes under
83.44 (due to taurine), antB.29 (due to trimethylamineoxide). investigation and to improve the performance of the subsequent
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Fig. 7. (a) PLS-DA scores plot in urine after GA and (b) the regression coefficients of the PLS-DA model shown in (a).
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multivariate pattern recognition analysis, a variable selectiorfable 4 o
method was applied. GA was applied to achieve a better sep&“mmary of classification percentages for the test set

ration of the classes and remove variables that were not relategdmple type PLS-DA PLS-DA (after GA)
to gender differences. After GA, the number of variables wasg, - 84 96
reduced to 78 for the plasma samples, 69 for the urine samy;ine 76 84
ples, and 68 for the saliva samples. The classification percentageaiiva 52 52

was improved in both the training and the test set for both
plasma and urine dataset, but not in the saliva dataset. For the
plasma dataset, the scores plot (test set) after GA is shown iy o1 clusion
Fig. 6a, along with the regression coefficients plot for the vari-

ables that survived the GA variable selection method shown in 4

Fia. 6b 1H NMR metabonomic investigation presented in this
ig. 6b.

o work, combined with variable filtration algorithms and pattern
After appllcat_|on of GA, the male and female groups Wererecognition procedures, gave an evidence for the existence of
well separated in the PLS-DA scores plot of LV1 and LV2 qjo5r metaholic differentiation of individuals, according to their
(Fig. 6a). A negative value in the plot of the regression coefyyanqer or [ife style. In the first phase of this work, unsupervised
ficients (_F|g. 6b) mdu;ated a relatively high concentrathn of the(PCA) and supervised (PLS-DA) data mining methods, applied
metabolites present in the female plasma samples, while a pos; ¢ompination with correct and rigorous pre-processing of the
tive value indicated a relatively lower concentration. The iNVers§ata demonstrated that it is possible to obtain models that accu-
was true in what concerns the male plasma samples. In gener?é,tew classify metabonomic data samples. In the second part
the regression coefficients plot indicated that similar region%f the work, genetic algorithm procedures were incorporated
of the spectra that contributed to the clustering in the origina, o imize the resulting PLS regression equations by removing
dataset also contributed to the clustering seen after applicatiqe|eyant variables. GAs variable selection method dramatically
of the GA variable selection procedure. Also, GA selected ”e"Ymproved the separation between the two genders and different

chemical shifts that are important in discrimination between they, oy polites were identified that were involved in this separation.
two genders. These chemical shifts @&04 and$3.93 (due to

creatine) 3.58 (due to glucine)j4.08 (due to choline)j2.46

(due to glutamine), angP.14 (unknown). The classification per- References
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